Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Math Comput ; 69(2): 2177-2206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36531662

RESUMO

In this paper, we analyze the dynamics of a new proposed stochastic non-autonomous SVIR model, with an emphasis on multiple stages of vaccination, due to the vaccine ineffectiveness. The parameters of the model are allowed to depend on time, to incorporate the seasonal variation. Furthermore, the vaccinated population is divided into three subpopulations, each one representing a different stage. For the proposed model, we prove the mathematical and biological well-posedness. That is, the existence of a unique global almost surely positive solution. Moreover, we establish conditions under which the disease vanishes or persists. Furthermore, based on stochastic stability theory and by constructing a suitable new Lyapunov function, we provide a condition under which the model admits a non-trivial periodic solution. The established theoretical results along with the performed numerical simulations exhibit the effect of the different stages of vaccination along with the stochastic Gaussian noise on the dynamics of the studied population.

2.
Sci Rep ; 12(1): 5751, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388030

RESUMO

We deal in this paper with a diffusive SIR epidemic model described by reaction-diffusion equations involving a fractional derivative. The existence and uniqueness of the solution are shown, next to the boundedness of the solution. Further, it has been shown that the global behavior of the solution is governed by the value of [Formula: see text], which is known in epidemiology by the basic reproduction number. Indeed, using the Lyapunov direct method it has been proved that the disease will extinct for [Formula: see text] for any value of the diffusion constants. For [Formula: see text], the disease will persist and the unique positive equilibrium is globally stable. Some numerical illustrations have been used to confirm our theoretical results.


Assuntos
Epidemias , Modelos Epidemiológicos , Número Básico de Reprodução , Modelos Biológicos
3.
Results Phys ; 28: 104668, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34401224

RESUMO

To describe the main propagation of the COVID-19 and has to find the control for the rapid spread of this viral disease in real life, in current manuscript a discrete form of the SEIR model is discussed. The main aim of this is to describe the viral disease in simplest way and the basic properties that are related with the nature of curves for susceptible and infected individuals are discussed here. The elementary numerical examples are given by using the real data of India and Algeria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...